Infrabel Points Design and Maintenance
Summary

• Infrabel Objectives
• Infrabel Turnout Strategy
• New technology
• Turnout inspection strategy
• Investement program
• Expected results
Infrabel network
Some figures

• Main lines: 6.210 km
• Sidings: 2.847 km
• Level crossings: 2.108
• Turnouts in ML: 4.488
• Turnouts in Sidings: 7.519

• Mean track age: 18.4 year
• Mean speed: 112 km/h
• Maximum speed: 200 → 300 km/h
• ‘average’ UIC class: 4.69
1. Infrabel priorities

Strategic priorities of INFRABEL

Safety

Punctuality

Capacity

Financial contrôle

In line with society

RAMS + LCC

21.11.2012

Infrabel Point strategy
Turnout cost analysis

- **Turnouts = main cost driver**
 - 27% of track maintenance cost are related to main line turnouts
 - 10% of track maintenance cost are related to siding turnouts
 - 30% of track investment cost

- **Turnout = important failure source**
 - 50% of track failure = turnouts
 - 150 interruptions/year
 - 40% are diamond crossings
 - 30% are « trailability reducer »

- **Approach to reduce costs & failures:**
 - Modern technology
 - Longer life time
 - Less maintenance/ automation/optimisation
 - Optimum LCC-renewal date
2. Turnout strategy

Turnout Strategy

LESS TURNOUTS
Can we reduce the number of turnouts?

MODERN TURNOUT
How to get better turnouts?

UP TO DATE TURNOUT
Do we guarantee Optimum lifetime

SAFETY ➤ RELIABILITY ➤ COSTS ➤
Less turnouts

- 4488* turnouts on main line
- 7519* turnouts in sidings

Impact:
- Conflict zone: « Danger points »
- Availability reducer
- Network flexibility
- Main cost driver

Approach:
- Projects: get easily 30% less turnouts
- How to get this done out of projects?

(*: figures 1/1/12)
Modern turnout design

- Limited catalogue of new turnouts types
- Only wooden supports
 - Oak: life time 26 year
 - Azobé: tropical wood
- Old point machine S61
 - Robust
 - Difficult to maintain/tamping
 - Maintenance sensitive
- Fasting not robust for heavy bearers

-25% LCC
Up to date turnouts

- The actual turnouts are outdated:
 - 30% in ML is older than 26 years
 - Increased maintenance work load
 - Risk on strongly degraded situations

- Need for catching up in Main Line
- Need for higher production capacity
Logistics optimisation

• Unique assembly in production plant:
 - Optimal quality assurance
 - Plug & Play-principle
 - Quick installation in track
• Transport with tilting wagons
• Efficient handling and laying
 (Under investigation)
 - Pannel handlers
 - Cranes
Updating ‘Bascoup’ Turnout Factory

• Modern production plant
 - Adapt to the new technologie (concrete)
 - Keep machines up to date
 - Improve health and safety for workers

• Realise renewal program:
 - Increase capacity

• Cost contrôlé
 - Improve productivity
New turnout technology

1. Modern ALD-system

- Hollow bearer:
 - Internal design
 - Elastic fastening
 - Adaptable to different point machines
 - Under sleeper pad equipped
 - Standard locking

- New point machine
 - Tender is starting up
 - Permanent ‘trailability reducer’
 - Reliable

- Optimised rodding
- Monitoring system
New turnout technology

2. Concrete bearers

- Approved internal design
 - Longer life time
 - Less maintenance
 - Higher track stability
- Two fastening systems:
 - For 60E1-turnouts: baseplated
 - 1/20 inclined rails
 - For 50E2-turnouts: direct fastening
 - No rail inclination
 - Lower speeds
- Vossloh fastening
- Optional USP’s
New turnout technology

3. Optimised geometry (ie crossing)

• Problematic:
 - Frequent restoration welding
 - Frequent and inefficient tamping
 - Reduced asset life time

• Design modifications:
 • Improved internal quality (X-Ray-verification)
 • Optimised wing rail inclination
 • Optimised point geometry
 • Longer check rails
New turnout technology
3. Optimised geometry

Achieved results:
• Reduced warranty calls
• Transfer length x 3
• Increased track stability
• Decreased crossing failure rate

Further evolutions:
• Optimisation of surveillance and repair procedures
 - Intervention limits
 - Intervention procedures
• Explosion hardened crossing
Turnout Inspection Strategy

• Context:
 - Turnout inspection =11% of maintenance cost
 - A lot of (safety) people in track
 - Up to individual interpretation
 - Often performed by maintenance people

• Objectifs:
 - Automate measurement
 - Independent evaluation

• Prospectifs
 - Update measuring cars for main line
 - Troleys for industrial lines en sidings
Updated measuring car

Today:
- 3 Measurement operations:
 - Measuring coach
 - Track safety dimensions
 - ALD-verification
- EM130-measurement in turnout:
 - We only measure straight line
 - We miss basic safety dimensions
 - Turnout positioning is difficult
 - Evaluation is time consuming

Tomorrow:
- New measurement trains:
 - Measure both branches
 - Include safety dimensions
 - Residual hand measurement by one team
 - Optimised GPS-localisation
- Centrale evaluatiecel:
 - More efficient and productif
 - Homogeneous decisions
5. Investements in production plant

Investements Bascoup

• Update production plant
 - Adapt to new technology
 - Update plant to actual standards

• New production hall & buffer
 - Safety of handling
 • Handle mounted turnouts
 • Improve logistic facilities

- Logistic optimisation
 • Efficient handeling on limited surface
 • Provide buffer between mounting and transport
Investements Bascoup

- Machine renewal
 - New switch machining tools
 - Improve productivity and output
 - New drilling and cutting machine
 - Adapt to actual designs
- New multifunctional machine
 - Production of different components
- Improve safety and health of workers
 - Reduce handling of weights
 - Reduced impact on human body
Effects

<table>
<thead>
<tr>
<th>MODERN TURNOUTS</th>
<th>UP TO DATE TURNOUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
</tr>
</tbody>
</table>

6. Expected results
Impact on cost

- Maintenance costs are significantly reduced:
 - First 15% turnout reduction is already planned
 - Progressive impact from modern turnouts
- Productivity in production plant
 - By modernising machines
 - By increasing production
 - Update oude wisselpark
- Reduced investment program within 30 years
 - Modern turnouts
 - Reduced number of turnouts
Conclusions

• Infrabel has a need to upgrade its turnout infrastructure in order to:
 - Reduce safety risk
 - Obtain a more reliable network
 - To get maintenance cost under controle on the short, medium and long term.
• The Infrabel turnout strategy is tending for less, better and up to date turnouts.
• In order to reach this goals, efforts are requested from all parties concerned: R&D, production, logistics, network, …
• The investements and change process have started recently although this is a continuation of efforts over the last years.
Questions?