Life Cycle Management at the Austrian Federal Railways ÖBB

Cost Optimisation Track Maintenance & Renewals Congress 2012
ÖBB Infrastructure
Network data

Life Cycle Cost strategies
LCC, investment strategy

Life Cycle Management
condition management

Discussion
ÖBB Infrastructure
Network data

Life Cycle Cost strategies
LCC, investment strategy

Life Cycle Management
condition management

Discussion
ÖBB Group 2011

6.25 billion Euro in total revenues

4,825 km rail network

40,800 employees

450 million passengers (rail & bus)
16,904 employees

More than 1,100 stations and stops

222 tunnels

6,440 trains (daily), 144 million train kilometres

10 self-owned hydroelectric power stations

74 billion gross tonne-kilometres (1990: 47 bn)

1,15 bn. Euro for maintenance and renewal
Technically oriented company

- Approx. 16,900 employees (incl. subsidiaries)
- Average age: approx. 43.7
- Proportion of women: approx. 7.2 %
- High percentage on the operational side
We are investing in the rail network of tomorrow
Growing demand for mobility

Capacity utilisation of infrastructure
Status as of 2009
Traffic forecast 2025+

- > 100% capacity utilisation
- > 80% and < 100% capacity utilisation
- < 80% capacity utilisation
- No evaluation of capacity

Capacity utilisation was measured over an operation period of 24 hours. The relevant direction was used in case of two-track routes.
... as part of the strategy for target network 2025

Master plan 2011 – 2016
12.8 bn Euro

Peak funding for infrastructure investments
over 2 bn euro per annum

Includes stimulus package and Brenner Base Tunnel
European transport hub

- Through station east-west/north-south connections
- Link-up of 3 TEN corridors
- Urban development project
- Total area > 100 ha
 - 20,000 jobs
 - 5,000 apartments
- Urban infrastructure: public transport, park, schools

Vienna Central Railway Station
New Vienna – St. Pölten section

Length: 44 km, divided into 3 sections:

- 14.4 km Wienerwald section
- 17 km Tullnerfeld section
- 12.6 km West section

Completion date: 2012
The new Semmering Base Tunnel

Key project of the new southern railway and the Baltic-Adriatic axis (Danzig-Bologna)

27.3 km long, twin bore tunnel

Most easterly standard level railway in the Alpine region

Train speeds up to 230 km/h

Construction time 2012-2024
Building cost: approximately 3.1 Bn. Euro
New twin-track high-performance line

Length: approx. 130 km

Approx. 33 km
Twin-track Koralm Tunnel

Investment volume: 5.373 bn euro

Building contractors:
Arge Massivbau-Plantrans, Strabag AG,
Swietelsky Tunnelbau GmbH & CO KG, Alpine Bau
GmbH, Beton- und Monierbau GmbH,
Held&Francke, Wayss & Freytag Ingenieurbau and others
Effective investments

1 euro invested in railway expansion

Infrastructure construction phase

Infrastructure operational phase

has the effect of 1.5 to 2.3 euro in the national economy

1 bn euro of investment creates and/or safeguards approx. 17,000 jobs

Improved accessibility and development of the regions creates and safeguards jobs for the long term
Backlog of issues in the existing network

- 70% of ÖBB train paths still date back to the Austro-Hungarian Empire
- Westbahn is near its breaking point
- Quality problems in the existing network
- Inefficient branch lines
- Challenge: maintenance work during ongoing operations
- 2010: 215 condition based slow orders in the core network
ÖBB Infrastructure
Network data

Life Cycle Cost strategies
LCC, investment strategy

Life Cycle Management
condition management

Discussion
Life Cycle Cost Analysis – Permanent Way

In cooperation with Graz Technical University
Life Cycle Cost Analysis – Permanent Way

less life-span

reduction of maintenance costs
reduction of operational hindrance costs
Life Cycle Cost Analysis – Permanent Way

- PROLONGING SERVICE-LIFE
- HIGH INITIAL QUALITY
Since 1994: 826 km of mechanised formation rehabilitation

Measurement charts prove the sustainability

„The right measure at the right time“
 Investment strategy – Ballast protection

- Under Sleeper Pads reduce the stresses in the ballast bed.
- Additional Costs of a track: plus 3 %
- Life Cycle Costs of this new track type: minus 23 %
Investment strategy - rails

- Head Hardening of rails (350 Brinell) reduces the side wear of the curved rails.
- Additional costs + 10 %
- Life Span in curves + 300 %
Quality behaviour of the track

- Condition behaviour
- Bettering due to maintenance
- Behaviour of substance
- Economical life-span
- Technical life-span
Quality management
ÖBB Infrastructure
Network data

Life Cycle Cost strategies
LCC, investment strategy

Life Cycle Management
condition management

Discussion
„You can‘t manage it, if you can‘t measure it!“
Presentation of Quality Figures

Lage der Messfühler:
1. Encoder
2. OGMS
3. Appliance-MU
4. GPS-Anchor
5. Riffelensensor

ÖBB-Infrastructure / Florian Auer
Life Cycle Management at the Austrian Federal Railways

ÖBB INFRA
Fahrwegtechnisches Streckenband
linke Schiene
rechte Schiene
Befestigung
Schwellen
Schotter
Untergürt

Verläufsgraten 100m-Abschnitt
Strecke 8052, Gleis1, km 176.200 bis km 176.300

Auswertediagramm Zustand
Schienenoberfläche linke Schiene

Ultrasschall und Wirbelstrom linke Schiene

© ÖBB, Hannes
Presentation of Quality Figures

safety, availability, sustainability

LCM
- substance
- renewal
- condition
- maintenance
- functionality
- fault clearing
- safety / quality
- inspection / small maintenance

ÖBB-Infrastructure / Florian Auer
Life Cycle Management at the Austrian Federal Railways

20/11/2012
Presentation of Quality Figures

safety, availability, sustainability

expert system NATAS
Track quality

Development of track geometry deterioration

• better planning of maintenance work

• deterioration behaviour gives the condition of subsoil and ballast bed
- Systematic analysis of the rail failures
- Allows prognosis of residual life-span
- Number of broken rails
 - 2008: 240 pcs.
 - 2011: 87 pcs.
Rail fastenings

- Implementation of new measurement signals rail inclination and base gauge.
- Analysis of the condition of the fastenings with a new quality.

Base gauge (rail foot distance)
The rail fastenings are the cheapest, but especially in curves also the weakest parts of the track.

To ensure the economic life-span it is necessary to keep the condition of the fasteners on a high level.
Development of a new track design (no corrugation on low rail).

Corrugated rails are up to 15 dB louder than tracks without showing this phenomena.
Renewal prognosis

- The expert system NATAS supports at the prognosis of the track components’ residual life-span.
- This information is necessary to do life cycle cost analysis.
Since 2011 a LCC-cost analysis has to be done for every track renewal.

Variante 1: total renewal 2011

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neugestaltung / Neugestaltung mit UaSe</td>
<td>36,0</td>
<td></td>
</tr>
<tr>
<td>Gründliche Durchführung</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Stößen</td>
<td>Anzahl in ND</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td>Schieneneinwechsel</td>
<td>Anzahl in ND</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Stoppfahrt</td>
<td>Anzahl in ND</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Zwischenlagereinwechsel</td>
<td>Anzahl in ND</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>Mängelbehebung</td>
<td>Anzahl in ND</td>
<td>36,0</td>
<td></td>
</tr>
</tbody>
</table>

€ Investition und € Instandhaltung

Variante 1

Variante 2: partial renewal 2011, total renewal 2020

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neugestaltung / Neugestaltung mit UaSe</td>
<td>36,0</td>
</tr>
<tr>
<td>Gründliche Durchführung</td>
<td>0,0</td>
</tr>
<tr>
<td>Stößen</td>
<td>Anzahl in ND</td>
<td>6,0</td>
</tr>
<tr>
<td>Schieneneinwechsel</td>
<td>Anzahl in ND</td>
<td>0,0</td>
</tr>
<tr>
<td>Stoppfahrt</td>
<td>Anzahl in ND</td>
<td>0,0</td>
</tr>
<tr>
<td>Zwischenlagereinwechsel</td>
<td>Anzahl in ND</td>
<td>0,0</td>
</tr>
<tr>
<td>Mängelbehebung</td>
<td>Anzahl in ND</td>
<td>36,0</td>
</tr>
</tbody>
</table>

€ Investition und € Instandhaltung

Variante 2

Δ € per year (annual costs)
The right measure at the right time!

Development of slow orders

<table>
<thead>
<tr>
<th>Anzahl</th>
<th>Kernnetz</th>
<th>Ergänzungsnetz</th>
<th>Gesamtnetz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand 1/2009</td>
<td>198</td>
<td>122</td>
<td>132</td>
</tr>
<tr>
<td>Stand 1/2010</td>
<td>215</td>
<td>192</td>
<td>215</td>
</tr>
<tr>
<td>Stand 1/2011</td>
<td>156</td>
<td>87</td>
<td>156</td>
</tr>
<tr>
<td>Stand 1/2012</td>
<td>88</td>
<td>64</td>
<td>59</td>
</tr>
<tr>
<td>Stand 9/2012</td>
<td>67</td>
<td>59</td>
<td>126</td>
</tr>
</tbody>
</table>
Life Cycle Management at the Austrian Federal Railways ÖBB

„You can manage it, if you can measure it!“

Cost Optimisation Track Maintenance & Renewals Congress 2012

ÖBB-Infrastruktur AG
Florian Auer
Nov, 20th London